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Nonlinear three-dimensional Rayleigh-Taylor instability
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Department of Mathematics, University of North Carolina at Chapel Hill,† Chapel Hill, North Carolina 27599
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The Rayleigh-Taylor instability is studied for an incompressible inviscid fluid of infinite depth for three-
dimensional~3D! spatially periodic flow. The problem is formulated in terms of general conditions that allow
one to find the symmetry of the observable steady structures. Analytical steady solutions for a hexagonal type
of flow symmetry~plane groupp6mm! are found in few orders of approximations. Interrelations between the
results with various types of flow symmetry are established. Comparisons with previously studied 3D flows
with ‘‘square’’ and ‘‘rectangular’’ symmetries are given.
@S1063-651X~98!14312-X#

PACS number~s!: 47.20.2k, 52.35.Py
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I. INTRODUCTION

The Rayleigh-Taylor instability~RTI! is the instability of
a heavy fluid layer~water! supported by a light fluid laye
~air! in a uniform gravity field@1#. RTI is a general phenom
enon in physics with a wide range of applications in ast
physics, lasers, plasmas, turbulence, fusion, etc.@2#. Often
experiments are performed in a region where fluids are d
and differ greatly in densities. Surface tension and visco
regularize the fluid motion and establish the most unsta
mode@3#. For small Weber and large Reynolds numbers,
Rayleigh-Taylor instability has a short-wave character, a
experiments show the following stages in the instability d
velopment. Small perturbations of the fluid-free surfa
quickly increase with incrementt21;Ag/l, whereg is the
uniform acceleration andl is the perturbation wavelengt
@2#. Rather fast, at perturbation amplitude;0.1l, the peri-
odic bubbles-jet structure forms: water is carried down in
jets and air is coming up in the bubbles. At timet@t, the
velocity of rising bubbles becomes constant and the mo
is steady. At later times, new coherent structures appear,
the typical flow scale grows. Eventually, turbulent mixin
breaks the ordered fluid motion@2,4,5#.

At the present time, there is not a complete theoret
description of the Rayleigh-Taylor instability. The first th
oretical RTI studies have been performed by Taylor@4#,
Layzer @6#, Garabedian@7#, and Birkhoff @8#. The theories
agree reasonably with experimental results but could not
plain all observable RTI features. In 1957, Garabedian w
the first to put forward a hypothesis that the steady solu
is not unique@7#. For a 2D flow, the quantitative verificatio
of Garabedian’s hypothesis has been obtained in@9#. It is
well known that as a rule the Rayleigh-Taylor instability is
spatial process because the periodic ‘‘plane’’ fluid motion
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unstable and eventually becomes three-dimensional@2#. The
3D flow is extremely complex, but some progress for spa
RTI has been reached in recent research@10–13#.

Under some experimental conditions,@2,4,5#, the
Rayleigh-Taylor instability is a short-wave instability, th
modes are coupling weakly, and, at a finite time, an or
imposed by the initial perturbation is preserved, while t
final turbulent RTI stage is a complete disorder. These f
tures of RTI allow one to apply the symmetry theory to t
problem. In this work, we consider the spatial Rayleig
Taylor instability on the basis of the general symme
analysis.

II. SYMMETRY ANALYSIS
FOR THE RAYLEIGH-TAYLOR INSTABILITY

Let us consider the motion of inviscid incompressib
fluid with the potentialF(r ,z,t),r5(x,y). The experimental
situation is well reflected in this theoretical approximation
linear and nonlinear stages of the instability@2,4,5#. At any
time t the flow is described by the Laplace equation with t
boundary conditions at infinity and at the free fluid surfa
z2z* (r ,t)50:

DF50, ¹Fuz51`50,
~1!

]F

]t U
z5z*

1 1
2 ~¹F!21gzuz5z* 50,

]z*

]t
1¹z¹Fuz5z* 50.

Asymptotically, at t@t, the motion becomes steady:
]F/]t50 and]z* /]t50 @2,4,5#.

In formulation ~1!, the typical scale of the instability is
defined by initial perturbation. For better agreement with R
experiments, the wavelength of the initial perturbation can
chosen in the vicinity of the most unstable mode@3–5#. De-
pendence on initial data is one of the most interesting qu
tions in the Rayleigh-Taylor instability. It is an experiment
fact that the late time asymptotes of incompressible RTI
essentially independent of initial data for small-amplitu
initial perturbations, but a dependence occurs in a cer
case@2#. It should be noted that apart from ‘‘traditional’

l
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1730 PRE 59S. I. ABARZHI
amplitude dependence, in three-dimensional RTI a n
problem will have to be posed. Namely, what is to be
symmetry of the initial perturbation to generate the stea
flow in RTI?

Let us assume that the initial perturbation att50 is spa-
tially periodic: F(r1n1l11n2l2 ,z* ,0)5F(r ,z* ,0) and
z* (r1n1l11n2l2,0)5z* (r ,0), wherel1 ,l2 are the vec-
tors of translations in the plane~x,y!. Since the problem is
periodic, there is the physical equivalence of points and
rections, and the flow~1! is invariant with respect to a sym
metry group. Vortices or traveling waves with an oscillato
time dependence;eiwt have never been observed in RTI,
this symmetry group is one of 17 space groupsG including a
subgroup of translations in a plane„here, we use interna
tional classification@14# for these 17 ‘‘two-dimensional’’
crystallographic groups. For example, the notationpgm2 de-
scribes the group with the following symmetry elements:
riodicity in the x and y directions ~small p!, twofold axis
along thez axis ~number 2!, and two planes of reflections
mirror (m) and glide (g!, along thez axis… @14# Fig. 1.

We consider the flow~1! as a smooth one. Thus, in th

FIG. 1. Symmetry groups of the flow. The plane~x,y! of the
flow ~fluid-free surface or velocity field!. Groupsp1, pm, p2, cmm,
and l i , spatial periods, rotation axis 2, and mirror planesm are
perpendicular to the plane of translations. Black circles mark
positions of maximum point~bubble top!. Motions are unstable
~a!,~b! and stable~c!,~d! with respect to spatial noiseq in the plane
~x,y!.
w
e
y

i-

-

plane~x,y! of initial perturbation there are no gaps or ove
laps, and a small-amplitude initial perturbation is taken to
analytical. To observe experimentally a periodic structure
bubble-jets, some conditions of stability must be satisfi
Actually, at least at finite time, the observed structure
stable with respect to spatial noise, and its macroscopic
namics is prescribed by a main spatial mode: bubbles
neither merging nor splitting. These natural conditions c
be easily reformulated in the language of symmetry theo

Let us classify the initial perturbation in terms of irredu
ible representations of wave vectors$k* % in G @14,15#.
These wave vectors determine the flow translation invaria
in time. At t!t, the flow symmetry is defined by that wav
vector K* , subgroupGK* , associated with the stronge
growth ~greatest increment!.

If modes related to various wave vectors$vk* % are
coupled weakly~do not intersect!, the irreducible represen
tations of the wave vectors are not mixing, and macrosco
dynamics of the system is determined byK* @15#. This as-
sumption of weakly coupled modes is usable as soon as t
is no change of the spatial periodicity of the flow, and t
solution ~1! is smooth and analytical over the free surfac
Note that the symmetry analysis requires a hierarchy of
modes but does not restrict the number of higher-order F
rier harmonics of initial perturbation. Experiments and n
merical research@4,5,10,11,16,17# confirm this assumption
of the immiscible modes. In fact, it is the reason for t
accurate agreement between Layzer’s theory and experim
tal data@4,5,6#. Evidently, the finite~large! amplitude of ini-
tial perturbation, surface tension, and viscosity will play
crucial role for the mode mixing@3,10,18#.

Although weak coupling of the modes is an importa
condition, taken alone, it is insufficient to generate a sta
periodic structure in RTI. Actually, assume that mod
$vk* % interact weakly and the wave vectorK* defines mac-
roscopic dynamics of the system. Then, the subgroupGK* of
this wave vector determines the stability of the structureK*
with respect to noise@14,15#. To explain this statement, le
us consider a macroscopically modulated structure with s
tial periodK* 1q, q5(qx ,qy), whereql!1. Let us make
the expansion of the solution~or fluid thermodynamic poten
tial! in terms of smallq. For the structureK* to be stable
with respect to noise, this expansion must be extreme aq
50 with no terms linear in components ofq: F(K* 1q)
2F(K* );Fq2, F.0. To provide this form of the expan
sion, vectorsq and 2q are needed to be equivalent wit
respect to symmetry operations,GK* (q)5GK* (2q) @15#. In
this way, the following conclusion can be drawing. If the
are no special reasons to form a quasiperiodic structure
subgroupGK* of the stable periodic structureK* should
contain the inversionGK* (k)5GK* (2k), Fig. 1.

Another important stability condition is the conservatio
of rotation symmetry elements at given translationsK* . This
condition is necessary to form a sole bubble in the unit c
with the instability development. Among 17 groupsG, the
symmorphic groups allow the occurrence of only the ma
mum point~or bubble! in the unit cell. For nonsymmorphic
groups~for example,p4mg, pmg, and pgg2!, no point in
the unit cell is immovable with respect to the symmetry o
erations@14#, and the maximum point~bubble! is bound not
to be unique.
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PRE 59 1731NONLINEAR THREE-DIMENSIONAL RAYLEIGH-TAYLOR . . .
The above conditions, in fact, provide the stability of t
periodic structure with respect to disruptions of its mac
scopic homogeneity. It should be noted that analogous
quirements are in common use for order-disorder transiti
@15#.

Let G be the invariance group of the flow~1! at t50 and
this initial perturbation be of small amplitude. Assume th
with the instability development up tot@t, the flow is
smooth, the irreducible representations of wave vectors$k* %
in G are not mixing, the structure related to the wave vec
K* is stable, and at given translations the number of rota
symmetry elements is unchanged. As we have seen, t
symmetry requirements provide the explanation for the
perimental observation of the spatially periodic structure
bubble jets in the RT instability.

Each of the 17 space groups can be considered on
basis of the above symmetry analysis. As evidenced by
above, a periodic steady flow can be generated by RTI
that initial perturbation invariant with respect to a symmo
phic group posing inversion~central point!. Groupsp6mm,
p4mm, pmm2, and cmm are some of them, Fig. 1. Fo
groups with no inversion, such asp1, pm, pg, andpmg, any
structures~including the ‘‘strongest growth’’ structures! are
unstable with respect to spatial modulations, and for th
groups the observation of the steady motion fails, Fig. 1.

For illustration, let us consider the small-amplitude init
perturbation invariant with respect to the hexagonal spa
symmorphic groupG5p6mm @14# in Eqs. ~1!. This group
allows the occurrence of a sole bubble~maximum point! in
the unit cell, Fig. 2. Ifl1 ,l2 are the translations in the plan
ul1u5ul2u5l, l25G(l1), with anglel1l252p/3, the unit
vectors of inverse latticek i are defined by the relationk ilj
52pd i j , i j 51,2, Fig. 2.

That wave vectork* with general position in the invers
space has the subgroup of identity transformationGk* 51.
The wave vectork* 50 subgroup is the pointed groupGk*
56mm. This wave vector corresponds to periods$l1 ,l2% in
real space. The other wave vectors arek* 5k1/2, Gk*
52mm, vectors of translations$2l1 ,l2%; k* 5(k11k2)/3,
Gk* 53m, vectors of translations$3l1,3l2%; k* 5mk1 ,
Gk* 5m; k* 5m(k11k2), Gk* 5m, vectors of translations
$l1 /m,l2% and $l1 /m,l2 /m%, respectively, withm.1/2
@14,15#.

Evidently, the wave vectork* 50 corresponds to un
changed spatial periods and to the shortest of all poss
translations. Att!t, the strongest growth of the instabilit
relates toK* 50. As long as spatial modes$vk* % interact
weakly, this wave vector describes the macroscopic dyn
ics of the system. Its subgroupGk* 56mm contains inver-
sion, so the periodic structure of the bubbles is stable w
respect to spatial modulations, at least at finite time. Hen
one would expect that att@t, the steady flow will have
symmetryp6mm and spatial periodl, Fig. 2.

Similarly, it is easily shown that for each of the symmo
phic groups,p4mm, pmm2, p2, andcmm~3D spatial flow!
or grouppm11 in the degenerate case of 2D flow, the sy
metry and periods of the initial perturbation can be preser
up to the steady motion stage@5,9,12,13#.

As has been found in@13#, in the limiting case of tension
less fluid ~1!, there is a family of steady solutions and th
dimension of this multitude is defined by the symmetry
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the spatial flow. For a flow with high symmetry,G
5p6mm or p4mm, there is a one-parameter family o
steady solutions with various values of the Froude num
F5n/Agl, whereas for the flow with groupG5pmm2, the
physical parameters of the problem~1! are $n,g,l1 ,l2
ÞG(l1)% and the steady solutions form a two-parame
family. At fixed values of acceleration and translations ea
solution of the multitude is an exact theoretical solution
sociated one-to-one with a free boundary, and with the fo
of the free boundary determined by the flow symmetry@18#.

III. FAMILY OF STEADY SOLUTIONS

In this part of the paper we find the family of stead
solutions for the flow with hexagonal symmetry grou
p6mm and compare the results for various symmetr
@6,7,13#. The approach we use for the free-boundary probl
~1! is an asymptotic expansion, and it is detailed in the
case for symmetriesp4mm andpmm2 in @12,13#.

For the invariance groupp6mm, we find the analytical
steady solutions by expanding the periodic potential and
free surface~1! in terms of the Laplace eigenfunctions. L
us switch to the frame of references moving upward with
steady velocityn. Then,

FIG. 2. Spatially periodic flow with invariance groupp6mm.
‘‘Air’’ is coming up in the bubbles, ‘‘water’’ is coming down in the
jets. Spatial periodsl i and vectors of the inverse latticek i . Black
circles mark the positions of the bubble top.



ha

t

t

ter

-

ed
-
s

of

line

wn:

olu-

1732 PRE 59S. I. ABARZHI
F~r ,z!5 (
m50

`

FmS 3z1
exp~2mkz!

mk (
i 51

3

cos~mk ir !D
1~cross terms!,

~2!

z* ~r !5 (
m50

`

zm(
i 51

3

cos~mk ir !1~cross terms!.

Herek1,2 are the vectors of the inverse lattice,k35k12k2 ,
with k5uk i u54p/(l)), r5(x,y), Fig. 2. $F% is the Fou-
rier amplitude matrix. The steady flow~1! is smooth, so there
are the relations

uFm11u!uFmu and uzm11u!uzmu. ~3!

In the unit cell, near the bubble top, the free boundary
the form

z* ~r !5(
n

zn(
i 51

3

~k ir /k!2n1~cross terms!. ~4!

The steady solutions~1! and ~3! are analytical and

uzn11u!uznu. ~48!

The free-boundary problem~1! can be formulated in
terms of correlation functions or momentsM generated by
the Fourier amplitudes@9,13#. At r'0,z'0 the equations a
the free boundary take the forms( i , jDi j (M ,z)x2i y2 j50 and
( i , jUi j (M ,z)x2i y2 j50, i 1 j 5N, with ‘‘diagonal’’ moments
Mn5(m51

` Fm(km)n1(cross terms) and velocity n5
23M0 . One obtains

r2~z113M1
2/4!C11r4~gz219z1

2M1
21M2

2/42M1M3/4!C2

1¯50, ~5!

r2~26z1M12M2/2!C11r4~29z2M119z1
2M213z1M3/2

1M4/4! !C21¯50

for the Euler equation and for the kinematic equation~1!,
respectively (C153/2, C259/8!.

We findN successive approximations of solutions~1! and
~5! from self-consistent conditions for surface variables$z%,
and at eachN we solve a chain of equations in variablesM .
Symmetry separates among all correlatorsM the linearly in-
dependent ones. Some additional relationships between
correlators can be established at any finiteN because of the
flow properties~3! and ~48!.
s

the

At N51, Mn5(m51
2 Fm(km)n, the velocityn523(F1

1F2)5(29M1k13M2)/2k2 and the curvature radius a
the top of the bubbleR521/(3z1)54M1 /M254g/9M1

2:

n5Ag/k~3kR24!/~kR!3/2, z* 52~x21y2!/2R,

F1524Ag/k~kR22!/3~kR!3/2, ~6!

F25Ag/k~kR24!/3~kR!3/2.

At R512/(5k) in Eqs. ~6!, F25F1 , and the conditions
~3! and ~48! break. So the physical region of the parame
values in Eqs.~6! is defined as 12/(5k),R,`. Maximal
velocity in Eqs. ~6!, n5Ag/k, peaks atR54/k for the
‘‘zero-parameter’’ solution withF250, Fig. 3. Note that at
N51, ‘‘hexagonal’’ and ‘‘square’’ flows remain axisymmet
ric, z* ;(x21y2), and the expressions~6! and @12# for the
velocity and the free surface coincide within the normaliz
factor k, Fig. 3. Moreover, the renormalized ‘‘maximal’’ so
lution reproduces Layzer’s result@6# ~to show this, one need
to expand in Taylor’s consideration@4# the flow potential and
the stream function in the lowest order ofz and r!.

In spite of the above agreement, the real behavior
steady solutions~1! is more complex. AtN52 in Eqs.~2!–
~4!, Mn5(m51

3 Fm(km)n, the velocity n523(F11F2

1F3), and one finds

FIG. 3. Dependence of the velocityn on parameterkR. Hexago-
nal 3Dh (p6mm), rectangular 3Dr (pmm2 @13#!, square 3Ds
(p4mm @12#!, and plane 2D (pm11 @9#! types of flow symmetry.
Roman numerals denote the order of approximation. Dashed
marks the second-order solutions for 3Ds flow. For 3Dr flow just
one of the cross sections of the two-parameter surface is sho
ky5kx/2 and Rx /Ry50.04(ky /kx)

2 with kx5k,Rx5R. Black
squares are ‘‘zero-parameter’’ solutions, circles mark edge s
tions kRcr .
n52Ag/k@15~kR!32124~kR!21216kR2144#/9~kR!5/2~kR26!,
~7!

z* 52~x21y2!/2R2~x21y2!2@3~kR!3222~kR!2160kR272#/24R3~kR26!.



e

a
th

x-

h

n

e

ri
e
e

s

et
d

,

,

nar-

-
-

e-

lu-
as

r-

ing

s

ined

s
mo-
and
nd
try
tions

-
er-
oves

cific

’’

ack
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The solution with F350 in Eqs. ~7! corresponds toR
510.843/k andn50.799Ag/k. These values are far from th
‘‘maximal’’ solution in Eqs.~6! with R54/k andn5Ag/k,
so ‘‘zero-parameter’’ solutions~1! diverge with an increase
in N, Fig. 3. Alternatively, in the physical region, there is
functional convergence of approximated solutions over
parameterR, Figs. 3 and 4. In accordance with Eqs.~3! and
~48!, we evaluate for;N (V.0, Fig. 4!

u@n~R!#N112@n~R!#Nu'V3102N,
~8!

uFm~R!/F1~R!u'102m.

The difference between the one-parameter solutions~6! and
~7! in the region of narrow bubbles is minimal atR
53.032/k and n50.987Ag/k with F2 /F150.14, while at
R,3.032/k the convergence becomes worse and atR
52.4/k (n50.916Ag/k) the relation F2 /F150.44. In
higher approximations, the function of velocity slightly e
ceeds solution~6!, Fig. 3.

The analysis of the obtained results is as follows. T
physical region of parameter values iskRcr<kR<`. The
velocity dependence over the family of solutions is no
monotone. Similarly to@9,12,13#, the first approximation is
the best and smooth forkR in the intervalkRcr<kR<`, Fig.
3. Over a wide range of parameters the difference betw
the approximated curves of solutions~6! and~7! ~velocity or
each of the Fourier amplitudes! is exponentially small. For
each given approximation the absolute values of the Fou
amplitudesFm decrease with increasing amplitude numb
m, Eqs. ~8!, Fig. 4. In this way, the existence of a uniqu
one-parameter family of steady solution is indicated a
functional limit over the parameterR, Figs. 3 and 4.

‘‘Narrow bubbles’’ with kRcr<kR<kRmax, ‘‘medium
bubbles’’ with kRmax,kR,`, and ‘‘solitary jets’’ with kR
→` can be separated in the physical region of param
values, Fig. 3. The region of ‘‘narrow bubbles’’ is bounde
by valueskRcr and ;kRmax. The critical curvature radius
kRcr , is the edge of the physical solutions. AtkR'kRcr for
any N, the conditions~3! and~48! are broken, Figs. 3 and 4

FIG. 4. Family of steady solutions in RTI for ‘‘hexagonal’’ flow
3Dh , N52. Decreasing ofFm with an increase inm in the physical
region of the parameter.
e

e

-

en

er
r

a

er

and the approximations diverge: bubbles cannot be too
row. We roughly estimateRcr5(2.71660.316)/k with ncr

5(0.95560.035)Ag/k. Expressions~6! and ~7! allow us to
evaluate the ‘‘maximum solution’’ asnmax'1.05Ag/k with
kRmax'4, Fig. 3@kR53.917 is the inflection point for veloc
ity ~7!#. At kRcr<kR<kRmax, R;(l/2), successive ap
proximations converge well exponentially, Eqs.~8!, Figs. 3
and 4. Interestingly, as the bubble radius increases, atkR
.kRmax, the convergence becomes worse. For these ‘‘m
dium bubbles’’ with kRmax,kR,` and R@(l/2), jet mo-
tion is important and the asymptotic expansions~2! and ~4!
cannot describe the flow correctly, Figs. 3 and 4. We eva
ate the poorly approximated region of ‘‘medium’’ bubbles
4.7,kR,9.2 @the velocityn.1.1Ag/k at 4.611,kR,6 in
Eqs.~7!#, Fig. 3. Nevertheless, for very large values of cu
vature radius,kR→` and R/(l/2)→`, the free boundary
problem~1! can be considered as a problem of jets pass
through periodic holes~slots! in the plane~x,y! @19#. For
these ‘‘solitary jets,’’ conditions~3! and ~48! are met, and
approximations converge, Figs. 3 and 4. WhenkR→`, Fou-
rier amplitudes F'1/AkR, the velocity is expected a
n→4Ag/(k2R) with F→0 †Eqs.~6! and ~7! @13#‡.

Let us compare the basic features of the results obta
in the symmetriesp6mm @Eqs. ~6! and ~7!#, p4mm @12#,
pmm2 @13#, and pm11 @9,13#, Figs. 3 and 5. These result
share a number of common properties. The equations in
ments and the solutions are very similar; narrow bubbles
solitary jets are typical regions of steady families, Figs. 3 a
5. When the flow is invariant with respect to these symme
groups, there is a convergence of successive approxima
as the functional limit over the parameter~or parameters for
‘‘rectangular’’ flow pmm2!. Reducing that multitude dimen
sion required by symmetry immediately leads one to a div
gence of successive approximations and, in general, rem
approximated solutions from the physical region@12,13#.
The dependence of the approximated solutions on a spe

FIG. 5. The family of steady solutions in the ‘‘narrow-bubbles
region for hexagonal 3Dh (p6mm), square 3Ds (p4mm @12#!, and
plane 2D (pm11 @9#! types of flow symmetry.l is the spatial pe-
riod. Roman numerals denote the order of approximation. Bl
squares are renormalized Layzer’s solutions,R54/k, n5Ag/k in
3D (3Dt tubular flow! andR53/k,n5Ag/3k in 2D.
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1734 PRE 59S. I. ABARZHI
choice of truncations in the physical region is weak@12,13#
@Eqs. ~6! and ~7!#. Methods~2! and ~4! and @12,13# can be
considered as a general approach to the problem of st
motion in RTI for all kinds of spatial symmetries.

To make a quantitative comparison of the results at
ferent symmetries, we need to choose the appropriate le
scale. In dimensionless unitsAg/k and 1/k, ‘‘square’’ and
‘‘hexagonal’’ one-parameter families of solutions are wea
differing, Fig. 3. Bubbles remain near axisymmetric for bo
symmetries,z* ;(x21y2)/R, and the ‘‘dimensionless’’ the-
oretical description is a universal one for these o
parameter families of steady solutions. Remember that
value of the wave vectork depends significantly on the la
tice, Eqs.~2! @20#. At fixed wavelengthl, 3D hexagonal flow
is slower than 3D square flow@12,13#, whereas hexagona
bubbles are narrower than square ones, Fig. 5, and, natu
3D flow is faster than 2D flow@2,5,6#.

Note that wavelengthl of the initial perturbation~or tube
diameter for tubular flow! is a parameter that can be eas
controlled experimentally@3,4#. The bubble radiusR is the
free parameter of the steady solutions family in problem~1!.
At a fixed value of translationl, the radius of the stead
bubble is subject to wide variations, from;l/2 to infinity,
Fig. 3. So the wavelengthl, not the bubble radius, is th
basic length scale in problem~1!. The bubble velocity and
the bubble radius of curvature are the quantities to be m
sured in the Rayleigh-Taylor instability.

To separate a unique significant flow in the family
steady solutions~1!, the linear stability analysis has bee
performed in@20# recently. The results show us that for he
agonal flowp6mm @Eqs.~6! and ~7!# ~and, thus, for square
flow p4mm @12#!, the ‘‘maximal solution’’ with nmax

'1.05Ag/k andkRmax'4 is stable, whereas solitary jets an
medium bubbles are unstable.

As far as we know, no experiments have been carried
to study quantitatively the effect of flow spatial symmetry
the RT instability, and, unfortunately, there are no sufficie
experimental data on the bubble radius@4,5,10,11,16#. For
3D steady flow, Taylor’s result@4# in a tube is n
50.49Ag(l/2); Read’s measurements for 3D periodic m
tion @5# give a larger value,n50.51Ag(l/2). The numerical
simulations performed by Li for ‘‘square’’ compressible flo
with Atwood number about unity @11# give values
n/Ag(l/2)50.57– 0.59. Although ‘‘experimental’’ bubble
are slower than ‘‘theoretical’’ ones, these values of veloc
agree with our solutions. It should be noted that Taylo
velocity n50.49Ag(l/2) @4# is close to the ‘‘hexagonal’’
one-parameter family of steady solutions~and maximum so-
i-
y
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dy

-
th

-
e

lly,

a-

ut

t

-

y
s

lutions p6mm!, rather than the ‘‘square’’ one, and the valu
@4# can never be obtained for a flow with square symme
p4mm, Fig. 5 @12#. Clearly, the hexagonal lattice is the clo
est to the flow with ‘‘cylindrical’’ properties, and the hex
agonal symmetry of problem~1! gives one more adequat
description of Taylor’s experiment.

IV. CONCLUSION

It this paper we shown the following.
There is an experimental region, where the Rayleig

Taylor instability can be studied on the basis of symme
theory. The symmetry approach allows us to analyze the
bility of steady periodic structures with respect to disruptio
of the macroscopic homogeneity. The steady motion can
generated by RTI, if initial perturbation is invariant with re
spect to symmorphic groups posing inversion, such as h
agonal, square, rectangular, oblique, or rhombic groups.
tice that this condition is necessary but not sufficie
Starting from this condition, the local stability analysis@20#
poses harder requirements~no splitting instabilities!, and
now it seems likely that periodic steady motion in RTI c
be observed for high-symmetric groupsp6mm and p4mm
only.

The asymptotic expansion at the bubble top in terms
moments is a general approach to the steady problem~1! in
RTI. The method gives one the family of steady solutions
3D †Eqs.~6! and~7! @12,13#‡ and 2D flows, and the numbe
of the family parameters is determined by the flow symm
try. Results obtained for various symmetries share a num
of common properties. For high-symmetric flows, the fam
lies of steady solutions get a universal theoretical descrip
in dimensionless units.

For 3D flows there are no sufficient experimental da
and measurements of the steady bubble velocity and its
dius of curvature allow one to evaluate the correctness of
theory.

As was already noted, in real fluids the ‘‘experimenta
bubbles are slower than the theoretical ones. Studying o
motion~boundary layer for a flow in a tube! for compressible
and viscous fluids would eliminate this discrepancy.
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