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Nonlinear three-dimensional Rayleigh-Taylor instability
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The Rayleigh-Taylor instability is studied for an incompressible inviscid fluid of infinite depth for three-
dimensional3D) spatially periodic flow. The problem is formulated in terms of general conditions that allow
one to find the symmetry of the observable steady structures. Analytical steady solutions for a hexagonal type
of flow symmetry(plane grougp6mm) are found in few orders of approximations. Interrelations between the
results with various types of flow symmetry are established. Comparisons with previously studied 3D flows
with “square” and “rectangular” symmetries are given.
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[. INTRODUCTION unstable and eventually becomes three-dimensidjalThe
3D flow is extremely complex, but some progress for spatial
The Rayleigh-Taylor instabilityRTI) is the instability of ~ RTI has been reached in recent resedfdh-13.

a heavy fluid layerwatep supported by a light fluid layer Under some experimental conditiong,2,4,5, the
(air) in a uniform gravity field 1]. RTI is a general phenom- Rayleigh-Taylor instability is a short-wave instability, the
enon in physics with a wide range of applications in astro-modes are coupling weakly, and, at a finite time, an order
physics, lasers, plasmas, turbulence, fusion, [&E. Often imposed by the initial pe_rturbation is prgserved, while the
experiments are performed in a region where fluids are deefn@l turbulent RTI stage is a complete disorder. These fea-
and differ greatly in densities. Surface tension and viscositjt"eS of RTI allow one to apply the symmetry theory to the
regularize the fluid motion and establish the most unstabl roblem_. n t.h.'s work, we co_nsuder the spatial Rayleigh-
mode[3]. For small Weber and large Reynolds numbers, the aylor_ instability on the basis of the general symmetry
Rayleigh-Taylor instability has a short-wave character, and’inalyss.
experiments show the following stages in the instability de-
velopment. Small perturbations of the fluid-free surface Il. SYMMETRY ANALYSIS
quickly increase with increment™ '~ /g/\, whereg is the FOR THE RAYLEIGH-TAYLOR INSTABILITY

uniform acceleration and is the perturbation wavelength | ¢t ys consider the motion of inviscid incompressible
[2]. Rather fast, at perturbation amplituded.1\, the peri-  fiq with the potentialb(r,z,t),r = (x,y). The experimental
odic bubbles-jet structure forms: water is carried down in th&jyation is well reflected in this theoretical approximation at
jets and air is coming up in the bubbles. At tie 7, the  jinear and nonlinear stages of the instabilig;4,5). At any
velocity of rising bubbles becomes constant and the motiofime t the flow is described by the Laplace equation with the

is steady. At later times, new coherent structures appear, alghyndary conditions at infinity and at the free fluid surface
the typical flow scale grows. Eventually, turbulent mixing z—7*(r,t)=0:

breaks the ordered fluid motidi2,4,5].

At the present time, there is not a complete theoretical AD=0, V®|,_..=0,
description of the Rayleigh-Taylor instability. The first the- 1)
oretical RTI studies have been performed by Taylét, 97
Layzer[6], Garabediari7], and Birkhoff[8]. The theories +1(V®)2+927,. =0, 7+VZV‘I’|Z:#=0-

agree reasonably with experimental results but could not ex-9t | ,_

plain all observable RTI features. In 1957, Garabedian was

the first to put forward a hypothesis that the steady solution Asymptotically, att>r, the motion becomes steady:

is not uniqud 7]. For a 2D flow, the quantitative verification 9®/9t=0 anddz*/st=0 [2,4,5].

of Garabedian’s hypothesis has been obtainein It is In formulation (1), the typical scale of the instability is

well known that as a rule the Rayleigh-Taylor instability is a defined by initial perturbation. For better agreement with RT

spatial process because the periodic “plane” fluid motion isexperiments, the wavelength of the initial perturbation can be
chosen in the vicinity of the most unstable md8e-5]. De-
pendence on initial data is one of the most interesting ques-

*Present address: University of Bayreuth, Institute for Theoretications in the Rayleigh-Taylor instability. It is an experimental
Physics, Bayreuth 95440, Germany. FAX49-921-555820. Elec- fact that the late time asymptotes of incompressible RTI are

tronic address: snezha@uni-bayreuth.de essentially independent of initial data for small-amplitude
TFAX: +1-919-962-5228. Electronic address: initial perturbations, but a dependence occurs in a certain
snezha@math.unc.edu case[2]. It should be noted that apart from “traditional”
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plane(x,y) of initial perturbation there are no gaps or over-
laps, and a small-amplitude initial perturbation is taken to be
analytical. To observe experimentally a periodic structure of
bubble-jets, some conditions of stability must be satisfied.
Actually, at least at finite time, the observed structure is
stable with respect to spatial noise, and its macroscopic dy-
namics is prescribed by a main spatial mode: bubbles are
neither merging nor splitting. These natural conditions can
be easily reformulated in the language of symmetry theory.

Let us classify the initial perturbation in terms of irreduc-
ible representations of wave vectofk*} in G [14,15.
These wave vectors determine the flow translation invariance
in time. Att<r, the flow symmetry is defined by that wave
vector K*, subgroupGg», associated with the strongest
growth (greatest increment

If modes related to various wave vectofs«} are
coupled weakly(do not intersegt the irreducible represen-
tations of the wave vectors are not mixing, and macroscopic
dynamics of the system is determined Ky [15]. This as-
sumption of weakly coupled modes is usable as soon as there
is no change of the spatial periodicity of the flow, and the
solution (1) is smooth and analytical over the free surface.
Note that the symmetry analysis requires a hierarchy of the
modes but does not restrict the number of higher-order Fou-
rier harmonics of initial perturbation. Experiments and nu-
merical research4,5,10,11,16,1F confirm this assumption
of the immiscible modes. In fact, it is the reason for the
accurate agreement between Layzer’s theory and experimen-
tal data[4,5,6]. Evidently, the finite(large amplitude of ini-
tial perturbation, surface tension, and viscosity will play a
crucial role for the mode mixin§3,10,18.

Although weak coupling of the modes is an important
condition, taken alone, it is insufficient to generate a stable
periodic structure in RTI. Actually, assume that modes

perpendicular to the plane of translations. Black circles mark thd @k} interact weakly and the wave vectii* defines mac-
positions of maximum pointbubble top. Motions are unstable roScopic dynamics of the system. Then, the subg@yp of

x,y). with respect to nois¢l4,15. To explain this statement, let

us consider a macroscopically modulated structure with spa-

tial periodK* +q, q=(dy,qy), wheregh<1. Let us make
amplitude dependence, in three-dimensional RTI a newhe expansion of the solutidir fluid thermodynamic poten-
problem will have to be posed. Namely, what is to be thetial) in terms of smallq. For the structur&K* to be stable
symmetry of the initial perturbation to generate the steadwith respect to noise, this expansion must be extremg at
flow in RTI? =0 with no terms linear in components of ®(K* +q)

Let us assume that the initial perturbationtatO is spa- —®(K*)~Fq?, F>0. To provide this form of the expan-
tially periodic: ®(r+n;N;+nyN,,2*,0)=®(r,z*,0) and sion, vectorsq and —q are needed to be equivalent with
Z* (r+nyA+ny\,,0)=2*(r,0), whereA;,\, are the vec- respectto symmetry operatiorGxx(q)=Ggx(—q) [15]. In
tors of translations in the plang,y). Since the problem is this way, the following conclusion can be drawing. If there
periodic, there is the physical equivalence of points and diare no special reasons to form a quasiperiodic structure the
rections, and the flowd) is invariant with respect to a sym- subgroupGg« of the stable periodic structur&* should
metry group. Vortices or traveling waves with an oscillatory contain the inversioiGy« (k) =Gy« (—k), Fig. 1.
time dependence €' have never been observed in RTI, so  Another important stability condition is the conservation
this symmetry group is one of 17 space gro@micluding a  of rotation symmetry elements at given translati&ifs This
subgroup of translations in a plarbere, we use interna- condition is necessary to form a sole bubble in the unit cell
tional classification[14] for these 17 “two-dimensional” with the instability development. Among 17 grou@s the
crystallographic groups. For example, the notapgm?2 de-  symmorphic groups allow the occurrence of only the maxi-
scribes the group with the following symmetry elements: pesmum point(or bubblg in the unit cell. For nonsymmorphic
riodicity in the x andy directions(small p), twofold axis  groups(for example,p4mg, pmg and pgg2), no point in
along thez axis (humber 2, and two planes of reflections, the unit cell is immovable with respect to the symmetry op-
mirror (m) and glide @), along thez axis) [14] Fig. 1. erations[14], and the maximum poirtubble is bound not

We consider the flow(l) as a smooth one. Thus, in the to be unique.

FIG. 1. Symmetry groups of the flow. The plafey) of the
flow (fluid-free surface or velocity fie)d Groupspl, pm, p2, cmm
and \;, spatial periods, rotation axis 2, and mirror plamasre
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The above conditions, in fact, provide the stability of the
periodic structure with respect to disruptions of its macro-
scopic homogeneity. It should be noted that analogous re-
guirements are in common use for order-disorder transitions
[15].

Let G be the invariance group of the flof&) att=0 and
this initial perturbation be of small amplitude. Assume that
with the instability development up to>r, the flow is
smooth, the irreducible representations of wave vedtots$
in G are not mixing, the structure related to the wave vector
K* is stable, and at given translations the number of rotation
symmetry elements is unchanged. As we have seen, these
symmetry requirements provide the explanation for the ex-
perimental observation of the spatially periodic structure of
bubble jets in the RT instability.

Each of the 17 space groups can be considered on the
basis of the above symmetry analysis. As evidenced by the
above, a periodic steady flow can be generated by RTI for
that initial perturbation invariant with respect to a symmor- A Y
phic group posing inversiofcentral point. Groupspémm,
p4mm, pmnR2, andcmm are some of them, Fig. 1. For . -
groups with no inversion, such @4, pm pg, andpmg any k
structures(including the “strongest growth” structurgsre
unstable with respect to spatial modulations, and for these
groups the observation of the steady motion fails, Fig. 1.

For illustration, let us consider the small-amplitude initial
perturbation invariant with respect to the hexagonal spatial
symmorphic groupgs=p6mm [14] in Egs.(1). This group
allows the occurrence of a sole bubljfeaximum point in p6mm
the unit cell, Fig. 2. IfA;, N, are the translations in the plane
[Nl =[Nzl =N, Ap=G(Ay), with angle; A, = 277/3, the unit FIG. 2. Spatially periodic flow with invariance groygsmm.
vectors of inverse lattic; are defined by the relatioki\;  “Ajr is coming up in the bubbles, “water” is coming down in the
:277'5” , 1]=1,2, Fig. 2. jets. Spatial perioda; and vectors of the inverse lattitg. Black

That wave vectok* with general position in the inverse circles mark the positions of the bubble top.
space has the subgroup of identity transformati&n =1.
The wave vectok* =0 subgroup is the pointed group,«
=6mm. This wave vector corresponds to peridds,A,} in
real space. The other wave vectors &®&=k;/2, G«
=2mm, vectors of translation§2\;,\,}; k* =(k;+k5)/3,
Gy+=3m, vectors of translationg3N;,3\,}; k* = uky,
G+ =m; k*=pu(k;+ky), G =m, vectors of translations
{N TN} and {Ny/w,Ny/u}, respectively, withu>1/2
[14,15.

Evidently, the wave vectok* =0 corresponds to un-
changed spatial periods and to the shortest of all possibl
translations. At<< 7, the strongest growth of the instability
relates toK* =0. As long as spatial modesy,«} interact
weakly, this wave vector describes the macroscopic dynam-
ics of the system. Its subgroup,« =6mm contains inver-
sion, so the periodic structure of the bubbles is stable with
respect to spatial modulations, at least at finite time. Hence, In this part of the paper we find the family of steady
one would expect that a7, the steady flow will have solutions for the flow with hexagonal symmetry group
symmetryp6mm and spatial period, Fig. 2. pé6mm and compare the results for various symmetries

Similarly, it is easily shown that for each of the symmor-[6,7,13. The approach we use for the free-boundary problem
phic groupsp4mm, pmnR, p2, andcmm(3D spatial flow (1) is an asymptotic expansion, and it is detailed in the 3D
or grouppml1 in the degenerate case of 2D flow, the sym-case for symmetriepdAmmandpmn® in [12,13.
metry and periods of the initial perturbation can be preserved For the invariance group6mm, we find the analytical
up to the steady motion stag®,9,12,13. steady solutions by expanding the periodic potential and the

As has been found ifL3], in the limiting case of tension- free surfacg(1) in terms of the Laplace eigenfunctions. Let
less fluid (1), there is a family of steady solutions and the us switch to the frame of references moving upward with the
dimension of this multitude is defined by the symmetry ofsteady velocityv. Then,

®

S

the spatial flow. For a flow with high symmetryG
=p6mm or p4mm, there is a one-parameter family of
steady solutions with various values of the Froude number
F=v/\/g\, whereas for the flow with grou =pmne, the
physical parameters of the problefd) are {v,g,A;,\;,
#G(N\q)} and the steady solutions form a two-parameter
family. At fixed values of acceleration and translations each
solution of the multitude is an exact theoretical solution as-
Sociated one-to-one with a free boundary, and with the form
of the free boundary determined by the flow symméir§|.

Ill. FAMILY OF STEADY SOLUTIONS



1732 S. |. ABARZHI PRE 59
exp(—mk2) vi(g/k)
D=3 & |32+ XKD S k) /(g v
m=0 mk i=1 s SDSh ~
’ I
+(cross termg I
0.8 1
x 3 2) 3D, n
Z*(r)= >, 77>, cogmk;r)+(cross terms iy I
=0 i=1
m i 2
Herek, , are the vectors of the inverse lattide,=k; — k5, 047
with k= |k;|=4m/(AV3), r=(x,y), Fig. 2.{®} is the Fou-
rier amplitude matrix. The steady flo{&) is smooth, so there o2
are the relations (kR y 2
D.=l IJ.:2 Cl.:3 U.:4 D.:5 0.‘6 D.:7

|q)m+1|<|¢)m| (3)

and |Zm+l|<|zm|-

In the unit cell, near the bubble top, the free boundary ha:

the form

3
z* (=2, gnzl (kir/k)?"+ (cross terms  (4)

The steady solutionél) and (3) are analytical and

[Znral <&l (4)

The free-boundary problenil) can be formulated in
terms of correlation functions or momen¥% generated by
the Fourier amplitudef9,13]. At r~0,z~0 the equations at
the free boundary take the foris;D;;(M,{)x*'y? =0 and
S Ui (M, 0)x%y?1=0,i+j=N, with “diagonal” moments
M,==,_,®,(km)"+(cross terms) and velocity v=
—3Myg. One obtains

r2(£1+3M3/4)Cr+14(glo+9L2M 2+ M3/4— M M4/4)C,
(5

+...:0,

r2(—6£:M1—My/2)Cq+14(—9¢,M1+9L2M,+ 3¢ M4/2
+My/41)Cy+---=0

for the Euler equation and for the kinematic equatidh
respectively C,=3/2, C,=9/8).

We find N successive approximations of solutiqii$ and
(5) from self-consistent conditions for surface variabl&s
and at eactN we solve a chain of equations in variabMs
Symmetry separates among all correlatgrghe linearly in-

FIG. 3. Dependence of the velocityon parametekR Hexago-
nal 30, (p6mm), rectangular 3D (pmm2 [13]), square 3D
%p4mm [12]), and plane 2D gm11 [9]) types of flow symmetry.
Roman numerals denote the order of approximation. Dashed line
marks the second-order solutions for 3fibw. For 30 flow just
one of the cross sections of the two-parameter surface is shown:
ky=Kk./2 and R)(/Ry=0.04(ky/kx)2 with k,=k,R,=R. Black
squares are “‘zero-parameter” solutions, circles mark edge solu-
tionskR,.

At N=1, M,=32_,® (km)", the velocityr=—3(®,
+®,)=(—9Mk+3M,)/2k? and the curvature radius at
the top of the bubbl®= —1/(3,) =4M /M ,=4g/9M3:

v=\g/k(3kR—4)/(kR)®? z*=—(x*+y?)I2R,

®,=—4g/k(kR—2)/3(kR)%?, (6)

®,=\/g/k(kR—4)/3(kR)%2,

At R=12/(5k) in Egs.(6), ®,=®,, and the conditions
(3) and (4') break. So the physical region of the parameter
values in Eqs(6) is defined as 12/()) <R<«. Maximal
velocity in Egs. (6), v=1/g/k, peaks atR=4/k for the
““zero-parameter” solution with®,=0, Fig. 3. Note that at
N=1, “hexagonal” and “square” flows remain axisymmet-
ric, z* ~(x>+y?), and the expression$) and[12] for the
velocity and the free surface coincide within the normalized
factork, Fig. 3. Moreover, the renormalized “maximal” so-
lution reproduces Layzer's resiii] (to show this, one needs
to expand in Taylor's consideratigd] the flow potential and
the stream function in the lowest order o&ndr).

In spite of the above agreement, the real behavior of

dependent ones. Some additional relationships between tiseady solution$l) is more complex. AN=2 in Egs.(2)-
correlators can be established at any filtbecause of the (4), anifgzlcbm(km)”, the velocity v=—3(®,+ P,
flow properties(3) and(4'). +®3), and one finds

v=2g/k[15(KR)3— 124 kR)%+ 216k R— 144]/9(kR)**(kR—6),
(7)
¥ = — (X2+y?)12R— (x*+y?)?[3(kR)®— 22(kR)?+ 60k R— 72]/24R3*(kR—6).
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FIG. 4. Family of steady solutions in RTI for “hexagonal” flow
3D;,, N=2. Decreasing o, with an increase imin the physical FIG. 5. The family of steady solutions in the “narrow-bubbles”
region of the parameter. region for hexagonal 3P(p6mm), square 3R (p4mm[12]), and

plane 2D pm11 [9]) types of flow symmetry\ is the spatial pe-
The solution with®,=0 in Egs. (7) corresponds toR riod. Roman numerals denote the order of approximation. Black
—10.843k and»=0.799/g/k. These values are far from the Squares are renormalized Layzer's solutioRs; 4k, »=g/k in
“maximal” solution in Egs. (6) with R=4/k andv=/glk, 3P (3D tubular flow andR=3/k,»= Vg/3K in 2D.
so “zero-parameter” solutiongl) diverge with an increase
in N, Fig. 3. Alternatively, in the physical region, there is a and the approximations diverge: bubbles cannot be too nar-
functional convergence of approximated solutions over theow. We roughly estimatdR = (2.716+0.316)k with v,
parameteR, Figs. 3 and 4. In accordance with E¢8) and = (0.955+0.035)\/g/k. Expressiong6) and (7) allow us to

(4'), we evaluate foVN (V>0, Fig. 4 evaluate the “maximum solution” asq,~1.05/g/k with
kRya~4, Fig. 3[kR=3.917 is the inflection point for veloc-
I[»(R)In+ 1= [P(R)In|=Vx 107N, ity (7)]. At kRy<kR<kR,a, R~(\/2), successive ap-

(8) proximations converge well exponentially, Eq8), Figs. 3
|®W(R)/P(R)|~10"™. and 4. Interestingly, as the bubble radius increase&Rat

>KkRax the convergence becomes worse. For these “me-
The difference between the one-parameter soluti6psind  dium bubbles” with kR, <kR<c and R>(\/2), jet mo-
(7) in the region of narrow bubbles is minimal &  tion is important and the asymptotic expansi@gsand (4)
=3.032k and »=0.987%/g/k with ®,/d,=0.14, while at cannot describe the flow correctly, Figs. 3 and 4. We evalu-
R<3.032k the convergence becomes worse andRat ate the poorly approximated region of “medium” bubbles as
=24k (v=0.916/g/k) the relation ®,/d,;=0.44. In 4.7<kR<9.2[the velocityr>1.1/g/k at 4.61kkR<6 in
higher approximations, the function of velocity slightly ex- Egs.(7)], Fig. 3. Nevertheless, for very large values of cur-
ceeds solutiori6), Fig. 3. vature radiuskR—« and R/(\/2)—, the free boundary
The analysis of the obtained results is as follows. Theproblem(1) can be considered as a problem of jets passing
physical region of parameter values kR, <kR<w. The  through periodic holegslots in the plane(x,y) [19]. For
velocity dependence over the family of solutions is non-these “solitary jets,” conditiong3) and (4’) are met, and
monotone. Similarly td9,12,13, the first approximation is approximations converge, Figs. 3 and 4. Whét—~, Fou-
the best and smooth f&Rin the intervak R,<kR<o, Fig.  rier amplitudes®~1/\kR, the velocity is expected as
3. Over a wide range of parameters the difference betweep—4./g/(k?R) with F—0 [Egs.(6) and (7) [13]].
the approximated curves of solutiof® and(7) (velocity or Let us compare the basic features of the results obtained
each of the Fourier amplitudess exponentially small. For in the symmetriegp6mm [Egs. (6) and (7)], p4mm [12],
each given approximation the absolute values of the Fouriggmn? [13], andpm11 [9,13], Figs. 3 and 5. These results
amplitudes® ., decrease with increasing amplitude numbershare a number of common properties. The equations in mo-
m, Egs.(8), Fig. 4. In this way, the existence of a unique ments and the solutions are very similar; narrow bubbles and
one-parameter family of steady solution is indicated as aolitary jets are typical regions of steady families, Figs. 3 and
functional limit over the parametd®, Figs. 3 and 4. 5. When the flow is invariant with respect to these symmetry
“Narrow bubbles” with kR, <kR=<kR., “medium  groups, there is a convergence of successive approximations
bubbles™ with kR,,x<kR<, and “solitary jets” with kR  as the functional limit over the parameter parameters for
—o can be separated in the physical region of parametefrectangular” flow pmn®). Reducing that multitude dimen-
values, Fig. 3. The region of “narrow bubbles” is bounded sion required by symmetry immediately leads one to a diver-
by valueskR,, and ~kR.,. The critical curvature radius, gence of successive approximations and, in general, removes
kR, is the edge of the physical solutions. klR~kR., for ~ approximated solutions from the physical regift®,13.
any N, the conditiong3) and(4') are broken, Figs. 3 and 4, The dependence of the approximated solutions on a specific
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choice of truncations in the physical region is wdaR,13] lutions p6mm), rather than the “square” one, and the value

[Egs. (6) and (7)]. Methods(2) and (4) and[12,13 can be [4] can never be obtained for a flow with square symmetry

considered as a general approach to the problem of steagydmm, Fig. 5[12]. Clearly, the hexagonal lattice is the clos-

motion in RTI for all kinds of spatial symmetries. est to the flow with “cylindrical” properties, and the hex-
To make a quantitative comparison of the results at dif-agonal symmetry of problerfil) gives one more adequate

ferent symmetries, we need to choose the appropriate lengtlescription of Taylor's experiment.

scale. In dimensionless unitgg/k and 1k, “square” and

“hexagonal” one-parameter families of solutions are weakly IV. CONCLUSION

differing, Fig. 3. Bubbles remain near axisymmetric for both _ _

symmetriesz* ~ (x2+y?)/R, and the “dimensionless” the- It this paper we shown the following. _

oretical description is a universal one for these one- 'N€ré is an experimental region, where the Rayleigh-

parameter families of steady solutions. Remember that thé@ylor instability can be studied on the basis of symmetry

value of the wave vectck depends significantly on the lat- theory. The symmetry approach allows us to analyze the sta-

tice, Egs.(2) [20]. At fixed wavelength, 3D hexagonal flow bility of steady perlodlc structur_es with respect to d!sruptlons

is slower than 3D square flopd2,13, whereas hexagonal ©°f the macroscopic homogeneity. The steady motion can be

bubbles are narrower than square ones, Fig. 5, and, naturaligenerated by RTI, if initial perturbation is invariant with re-

3D flow is faster than 2D floW2,5,6]. Spect to symmorphic groups posing inversion, such as hex-
Note that wavelength of the initial perturbatior(or tube ~ @gonal, square, rectangular, oblique, or rhombic groups. No-

diameter for tubular flowis a parameter that can be easily fic€ that this condition is necessary but not sufficient.

controlled experimentally3,4]. The bubble radiuR is the  Starting from this condition, the local stability analy$20]

free parameter of the steady solutions family in probldjn ~ POSes harder requiremenao splitting instabilities and

At a fixed value of translation, the radius of the steady now it seems I|kely that penod'lc steady motion in RTI can

bubble is subject to wide variations, fromn/2 to infinity, P& observed for high-symmetric group§mm and pAmm

Fig. 3. So the wavelength, not the bubble radius, is the ©ONlY: _ _ _

basic length scale in probleifi). The bubble velocity and The asymptotic expansion at the bubble top in terms of

the bubble radius of curvature are the quantities to be me4OMents is a general approach to the steady prolgrin
sured in the Rayleigh-Taylor instability. RTI. The method gives one the family of steady solutions for

To separate a unique significant flow in the family of 3P [Eds.(6) and(7) [12,13] and 2D flows, and the number
steady solutiong1), the linear stability analysis has been Of the family parameters is determined by the flow symme-
performed in20] recently. The results show us that for hex- [Ty Results obtained for various symmetries share a number
agonal flowp6mm [Egs. (6) and (7)] (and, thus, for square of common properties. For high-symmetric flows, the fami-
flow p4mm [12]), the “maximal solution” with v, lies of steady solutions get a universal theoretical description

~1.05/g/k andkR,,,,~4 is stable, whereas solitary jets and in dimensionless units. - .
mediurr?bubbles g‘raex unstable. ¥l For 3D flows there are no sufficient experimental data,

As far as we know, no experiments have been carried o nd measurements of the steady bubble velocity and its ra-

to study quantitatively the effect of flow spatial symmetry on rius of curvature allow one to evaluate the correctness of the

the RT instability, and, unfortunately, there are no sufficient"€0"Y- . . o . .

experimental data on the bubble radi4s5,10,11,1% For As was already noted, in real f|U.IdS the experlrr'lental'
bubbles are slower than the theoretical ones. Studying of jet

3D sgte*ady flow, Taylor's resul{4] in a tube is v motion (boundary layer for a flow in a tubéor compressible
=0.49g(A/2); Read's measurements for 3D periodic MO- and viscous fluids would eliminate this discrepancy.

tion [5] give a larger valuey=0.51yg(\/2). The numerical
simulations performed by Li for “square” compressible flow
with  Atwood number about unity[11] give values
v/yg(A/2)=0.57-0.59. Although “experimental” bubbles  The author expresses gratitude to Professor S. I. Anisimov
are slower than “theoretical” ones, these values of velocityfor discussions, and to Professor F. H. Busse for suggestions
agree with our solutions. It should be noted that Taylor'sthat improved the readability of the paper. Part of this work
velocity v=0.49yg(\/2) [4] is close to the “hexagonal” was supported financially by the Alexander von Humboldt
one-parameter family of steady solutio@@d maximum so- Foundation.
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